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SMALL DISTURBANCES OF VERTICAL VELOCITY IN AN
ASYMMETRIC ATMOSPHERIC VORTEX

N. F. Vel'tishchev

ABSTRACI. The linear theory of disturbances of vertical
velocity in an asymmetric vortex is developed. Asymmetry
is considered to be a function of the rate of its shift. A
closed system of equations of hydrothermodynamics leads to
a conventional differential equation for vertical velocity
which belongs to the class of degenerate hypergeometric
equations. The boundary problem is solved (vertical move-~
ments at the center of a vortex are considered zero, and
bounded at some finite r = a). Two illustrations are pro-
vided with the results of calculations of the vertical velo-
cities at different rates of shift of the. cyclone. The
configuration of the zones of ascending and descending move-
ments has a spiral appearance and corresponds qualitatively
to the distribution of cloud cover in shifting cyclones,
observed from artificial Earth satellites., The asymmetry
in the distribution of the cloud cover observed in the
pictures received from satellites is suggested for use as a
sign to determine the direction of shift of cyclones over
territories with sparse networks of meteorological stations.
2 Illustrations and 5 Bibliographic entries.

Observations of cloud cover using radar and artificial Earth satellites /35%

have revealed quite clearly the spiral shape of the clouds in developed atmos-

pheric vortices.

Papers devoted to an explanation of the mechanism of formation of spiral
cloud bands as a rule use a symmetric model of a cycléne {1, 4, 51. However,
television pictures of cloud cover received from satellites as well as radar
observations indicate that the spiral cloud bands are quite often arranged some-
what asymmetrically relative to the center of the cyclone. This asymmetry un-—
doubtedly arises as the comnsequence of the asymmetry of the air flow in the

shifting cyclone.

* Numbers in the margin indicate the pagination in the original foreign text.
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Unlike previous works, this paper is an attempt to consider in the first
approximation the asymmetry of the air flow that arises as the consequence of

the shift of the cyclone.

Taking into account the close relatiomship between cloud cover and the
vertical movements, we shall consider in this paper the spatial distribution
of the vertical movements, assuming that the structure of the field of vertical
movements and the structure of‘the cloud cover must be closely related to
one another. Proceeding on the basis of factual data on the distribution of
cloud cover in cyclones, we will consider the disturbances of meteorological
elements in the tangential direction to be periodic. Since the spiral shape
of the cloud cover assumes periodicity of the disturbances in both the tangen-
tial and radial directions, it will be sufficient to obtain the conditions for
periodicity of the vertical movements in the radial direction in order to

find the conditions that favor the existence of cloud spirals.

The problem has already been solved approximately in this formulation

by several authors [1, 5] for the case of a symmetric vortical movement.

We will take as the initial equations, the equations of motion, continuity,
heat influx and state, written in cylindrical coordinates. This system of

equations will be solved by the method of small disturbances, i.e., we will

represent all functions in the original system in the form £ = f + f', where f
are the values of the functions in the principal flow and f' are their small
disturbances, whose derivatives and squares we shall disregard, thereby limit-

ing ourselves to linear theory.

Let us represent the functions in the original system in the form: 36

w=u(r)y—uy sinb-u'(ryexpi(mz -+ ni);
v = (ryexpi{mz 4 nd);
w=w'(r) expi{mz--nb); (1)
p=p(r, 6, 2)+p'(r)expi(inz+nt);
=p(2) Lo (ryexpi(mzt+nd);

T=T{r, 6 2)=T(r)exdi{mz-n5%),



where v, u, and w are the radial, tangential and vertical components of the wind

speed; p is the density, T is the temperature and p is the pressure.

The method of assigning functions characterizing the distributions u, v,
w, p, 0 and T in the principal flow (1), assumes a stationary state of the
solution. The tangential component of the wind speed is represented in the
form of two components, one of which is dependent on the radius and the other
on the polar angle. It is easy to see that the term Uy sin 8 is the contri-
bution to the tangential component of the wind speed caused by the shift of
the cyclone with a constant velocity Uge We will comnsider the fluid to be
incompressible and u(r)/r=w==const. , Performing the simplification assumed in
the theory of free convection and disregarding the horizontal temperature
gradients in the principal flow, we obtain the system of equations of small

disturbances in the form:
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where F=2w-+/=const, 7 is the Coriolis parameter, y, and y are the adiabatic

and actual temperature gradients.

System (2) can be converted to a conventional second order differential

equation for disturbances of the vertical velocity:
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We then estimate the order of the terms entering into the coefficients of
(3), keeping in mind the characteristic dimensions of cyclones (on the order

of hundreds of kilometers). Then

O —f;—:! ~10-5 M1, O[R] ~10% sec™}; (5)

O[L] ~10-5 sec~!; .O[L]'~ 10-° sec~Z,

By substituting the characteristic values of the parameters from (5)
into (3), it is easy to see that the additives containing the derivatives
can be disregarded for r > 100. Hence, for a large part of the cyclone (with
the exception of a small region adjacent to its center) the nature of the small

disturbances can be described rather accurately by the equation

dxw’ 1 dw’ I s mA(R2 — n2L2y
dart U Tar —KL?—'{— (T—n2L3) w' =0, (6)

Performance of the calculations for the symmetric model [1] has shown
that under actual conditions in the atmosphere the inequality [I'»n? L2 is
nearly always fulfilled. The exception is the case of adiabatic stratification
of the atmosphere, Taking into account the fact that the vertical temperature
gradients in a rather thick layer of the atmosphere (approximately 1 km and
more) rarely exceed the value 0.8°/100 m, we can use the inequality given

above and write (6) as follows:

.;‘Eq'_.}._‘_ii‘“i'___[ii_!-_m_g@i;;ﬁi]wlzo (7N



This is a degenerate hypergeometric equation and its solution is found with
the aid of degenerate hypergeometric functions. It should be noted that in
the event of a symmetric state of the principal flow, (7) is converted to the

Bessel function discussed earlier by the author [1].

We then regroup the additives in the coefficient with the free term in

(7), rewriting it in the form

A’ 1 dw’ 5 B R
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Assuming A=/ =5, Fi=-58r we will have /38
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Finally, carrying out the substitution
. o~ 1 ~
ry=(8ry)?, w== 5 12, (12)
we obtain (11) in the form
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—— the Bessel operator with subscript 2/+41 .
The general solution of (13) can be written (see [3]) in the form

@ % ; 14
rs) = Chisa () =+ DN (1), oo
where C and D are arbitrary comnstants and Jhi1 and Nip,, are hypergeometric
functions. The general solution of (14) is a linear combination of two

independent solutions satisfying different boundary conditions.

Cloudy and cloudless spirals alternately converge on the center of the
cyclone. On this basis, it is advantageous in the solution of (14) to consider
the disturbances in vertical velocity at the center of the cyclone to be equal
to zero. We will consider that the disturbances of the vertical velocity at the
periphery of the cyclone are known:

0’ —— . 4 ‘-—-r' ’
w I’=O O) w l/'x'a hanand wo. (15)

It is easy to show that in this case the following boundary conditions are

fulfilled:

~

~! ~
Wrymo=0; Wr,=0= .

We can show [3] that the only solution of (14) which satisfies the
Conditions (15) is

W(ry) = Claysy (73). (16)

The second independent solution has the pole at the origin of the
coordinates and does not satisfy the selected boundary conditioms. Considering
Relationships (15) and shifting to the original variables and functions,we

obtain the final solution



W(r) = — M;, (22 7) (17)
where /{31 (20r) is the Whittaker function.

Substituting (17) in the third relationship in System (1), we obtain the

general expression for disturbances of the vertical velocity:

. , wyVa . 8
W'(r, 8, 2) =expilmec—+nb) -—-_0/_7___‘/3/[3, 5 (227). (18)
. e ‘

Inasmuch as the disturbances of vertical velocity .that appear when clouds /39
develop in the wave troughs are projected in the horizontal plane in television
pictures of cloud cover, it is most interesting to view them relative to the
coordinates r and 8, considering that the -disturbances are located at some
fixed height z. Performing for the sake of siﬁplicity the calculations z=1L,/4 ,
where L,=2a/m is the vertical wave length and selecting the real part in (18),
we will have

wo/a.

Rew’(r, v0)='__ 7 '.M‘e,x(.?ar}sjn'né. (19)

The calculation of the functions Msj;., (2¢r) is performed with the aid of

a series [2]
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The calculations using (19) and (20) are cumbersome, so that when the
numerical experiment was performed some further simplifications were made which

are completely admissible in considering the real atmospheric processes.

We will estimate the order of the values B and ) entering into Series
(20). Assuming Lz = 8 km, uy = 10 m/sec,
Olra— 1] =103 deg/m,

7=270°, O[F] = Olw] = 10-5 sec™*,



we will have
O[] = 10-8 !, O]\l =1 v~",

i.e., the consideration of B makes a negligible contribution to the value of
the vertical velocity. Therefore, (8) can be replaced with a sufficient degree
of accuracy by the Bessel Equation (21)

d*w’ I dw 2 2 ,
"dr? +7—E;_T[“1—"“"]w=o» '
(21

where

A2 @2 — Fa)

T . (22)
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Equation (21) and the boundary Conditions (15) are satisfied by the
solution

@ = CJ;.(CLX)‘), (23

and the solution analogous to (19) assumes the form

’

Rew'(r, 0) = ———'j—{:—:}-)- Ji(er)sinnb . (24)

Thus, the nature of the distribution of vertical velocities depends on

the parameters o, and A. ¥For realization of a periodic motion in the radial

1
direction (and this is precisely what is required for the formation of spiral /40

cloud structure), the following inequality must be satisfied:

a; == m V”ﬂmcr————_ £ > 0. (25)

The parameter ) determines the order of the Bessel function. Proceeding

from (9), we formally have two roots:
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The physical conditions of the problem are satisfied only by the root

Al, since it is only in this case that there is a correct consideration of the
contribution of translation to the tangential component (the tangential compon-
ent must increase to the right of the direction of shift of the cyclone and must

increase to the left).

We used (24) in calculating the vertical velocity in the region of cyclones
of different intensity,moving at different velocities. Without dwelling on
‘the effects of stratification and angular velocity (w), let us see how the
shift 1f cyclones affects asymmetry in the distribution of vertical movements.

Figures 1 and 2 show the distribution w' at cyclone shift rates u, equal to

7 and 15 m/sec, respectively. It is easy to see in Figure 1 the asymmegry of
the distribution of vertical movements. As the rate of shift of the vortex
increases, asymmetry is observed with increasing clarity, as we can conclude by
comparing Figures 1 and 2. As a the angular velocity increases, the asymmetry
becomes slightly blurred, but at a cyclone shift rate in excess of 10 m/sec

it is quite clearly evident. /41

Figure 1. Distribution of small
disturbances of vertical velocity
at ug = 7 m/sec. Areas with

rising movements are shaded in
the figure. The arrow indicates
the direction of shift of the
vortex.




Figure 2. Distribution of small
disturbances of vertical velocity
at u, = 15 m/sec.

The asymmetry in the distribution of vertical currents (and therefore,
in the cloud cover) is obviously the result not only of shifting of the
cyclone, but also of thermal inhomogeneity of the cyclone itself and other
factors. Nevertheless, the asymmetry in the distribution of the cloud
cover which is often observed in pictures received from artificial Earth
satellites can be used as a guide to determine the direction of shift of cyclones

over a territory with a sparse network of meteorological statioms.
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